Journal Paper (17)

A knotted metamolecule with axisymmetric strong optical activity

Optical activity is the ability of chiral materials to rotate linearly polarized electromagnetic waves. A knotted chiral metamolecule is introduced here that exhibits strong optical activity corresponding to a 90° polarization rotation of the incident waves. More importantly, the torus knot structure is intrinsically chiral and multifold axisymmetric. Consequently, the observed polarization rotation behavior is found to be independent of how the incident wave is polarized. The metamolecule is fabricated through selective laser melting and experimentally validated in the microwave spectrum. This work represents the first ever metamolecule to be reported that is intrinsically axisymmetric and capable of simultaneously exhibiting…

Continue reading...

Conductive mixed-order generalized dispersion model for noble metals in the optical regime

Various dispersion models can be expressed as special cases of the Generalized Dispersion Model (GDM), which is composed of a series of Pade polynomials. While important for its broad applicability, we found that some materials with Drude dispersive terms can be accurately modeled by mixing a 1st order Pade polynomial with an extra conductivity term. This conductivity term can be separated from the auxiliary differential equation (ADE). Therefore, the proposed mixed-order model can achieve the same accuracy with fewer unknowns, thus realizing higher computational efficiency and lower memory consumption. For examples, we derive the model parameters and corresponding numerical errors…

Continue reading...

Antireflection temporal coatings: comment

The quarter-wavelength matching technique is widely used because it minimizes the reflection while it maximizes the transmission. The recently introduced antireflection temporal coatings (ATCs) [Optica7, 323 (2020)10.1364/OPTICA.381175] have been considered as its temporal analog. However, our study shows that by introducing an ATC, not only will the reflection be reduced but also the transmission. This phenomenon is opposite its spatial counterpart, which indicates that ATCs are more than simply a temporal dual of quarter-wavelength matching. This is a direct consequence of the different physical phenomena that are manifested in the temporal and spatial domains. Read more Wending Mai,* Jingwei Xu,…

Continue reading...

Complete polarization conversion using anisotropic temporal slabs

It is well known that control over the polarization of electromagnetic waves can be achieved by utilizing artificial anisotropic media such as metamaterials. However, most of the related research has been focused on time-invariant systems. Inspired by the concept of temporal boundaries, we propose a method to realize polarization conversion in real time by employing time-variant materials, whose permittivity or permeability switches between isotropic and anisotropic values. The criteria for complete polarization conversion are studied for several polarization angles, both analytically and numerically. Read more Jingwei Xu,* Wending Mai, AND Douglas H. Werner

Continue reading...

Discontinuous Galerkin time domain method with dispersive modified Debye model and its application to the analysis of optical frequency selective surfaces

We develop a discontinuous Galerkin time domain (DGTD) algorithm with an experimentally validated modified Debye model (MDM) to take metal dispersion into consideration. The MDM equation is coupled with Maxwell’s equations and solved together through the auxiliary differential equation (ADE) method. A Runge-Kutta time-stepping scheme is proposed to update the semi-discrete transformed Maxwell’s equations and ADEs with high order accuracy. Then we employ the proposed algorithm to analyze an infinite doubly periodic frequency selective surface (FSS) operating in the optical regime that exhibits transmission enhancement due to the surface plasmatic effect. The accuracy and the efficiency enhancements are validated through…

Continue reading...

Prismatic discontinuous Galerkin time domain method with an integrated generalized dispersion model for efficient optical metasurface analysis

Planar photonics technology is expected to facilitate new physics and enhanced functionality for a new generation of disruptive optical devices. To analyze such planar optical metasurfaces efficiently, we propose a prismatic discontinuous Galerkin time domain (DGTD) method with a generalized dispersive material (GDM) model to conduct the full-wave electromagnetic simulation of planar photonic nanostructures. Prism-based DGTD allows for triangular prismatic space discretization, which is optimal for planar geometries. In order to achieve an accurate universal model for arbitrary dispersive materials, the GDM model is integrated within the prism-based DGTD. As an advantage of prismatic spatial discretization, the prism-based DGTD with…

Continue reading...