Journal Paper (17)

An improved 2D/3D hybrid discontinuous Galerkin time domain method

Power integrity (PI) problem is essential when analyzing high speed signal passing through power ground. The fundamental mode in power ground is the zero-order parallel plate mode, which is capable for 2D simplification. However, in areas around anti-pads and other z-axis discontinuities, 3D algorithm has to be adopted to improve the accuracy. A hybrid 2D/3D discontinuous Galerkin time domain (DGTD) method has advantage on both accuracy and efficiency, thus is effective to cope with such full wave simulations. The 2D and 3D domains share the same triangular prism mesh. With appropriated basis functions, different domains can couple with each other…

Continue reading...

Broadband transparent chiral mirrors: Design methodology and bandwidth analysis

Chiral mirrors are a class of metamaterials that reflect circularly polarized light of a certain helicity in a handedness-preserving manner, while absorbing circular polarization of the opposite handedness. However, most absorbing chiral mirrors operate only in a narrow frequency band, as limited by the causality principle. Instead of absorbing the undesired waveform, here we propose a transparent chiral mirror that allows undesired waves to pass through. In particular, the handedness-preserving band of the transparent chiral mirror is free of the causality limit, thus enabling broadband functionality. Furthermore, since electromagnetic waves outside the handedness-preserving band may transmit through the proposed chiral…

Continue reading...

Prism-based DGTD with a simplified periodic boundary condition to analyze FSS with D2n symmetry in a rectangular array under normal incidence

In this letter, we develop a prism-based discontinuous Galerkin time-domain (DGTD) algorithm with simplified periodic boundary conditions (PBCs) to analyze infinite doubly periodic frequency selective surfaces (FSS). Most FSS structures contain patterned planar conductive layers and supporting dielectric layers. These layers are very thin compared to the wavelength. Therefore, general tetrahedral discretization of space will unnecessarily increase the number of mesh elements, as well as the number of unknowns. Instead, we propose using prismatic elements, which are more optimal for planar structures, resulting in less unknowns, less memory usage, and higher efficiency. The accuracy of the proposed prism-based DGTD method…

Continue reading...

A straightforward updating criterion for 2-D/3-D hybrid discontinuous Galerkin time-domain method controlling comparative error

The 2-D/3-D hybrid discontinuous Galerkin time-domain (DGTD) method is efficient to deal with structures that contain elements capable of 2-D simplification. To separate 2-D elements from 3-D ones, a criterion for approximation error manipulation is required. However, in the latest reported technique, this kind of criterion is derived from the causality principle and the Courant–Freidrichs–Lewy constraint, and thus is indirect and inessential to 2-D simplification. As a result, some elements capable of 2-D simplification are unnecessarily flagged as 3-D ones, deteriorating efficiency dramatically. Moreover, controlling absolute error, the traditional criterion is not flexible for structures with complex mode distribution. In…

Continue reading...

An efficient and stable 2-D/3-D hybrid discontinuous Galerkin time-domain analysis with adaptive criterion for arbitrarily shaped antipads in dispersive parallel-plate pair

A hybrid 2-D and 3-D discontinuous Garlerkin time-domain (DGTD) method is proposed for transient analysis of multiple arbitrarily shaped antipads in a dispersive parallel-plate pair. In the proposed hybrid method, the domains where only the zeroth-order parallel-plate mode exists are modeled by the 2-D DGTD, and the remaining domains are modeled by the 3-D DGTD. Each element is independent with others, thus easily parallelizable. Because higher order modes will propagate in the parallel-plate pair, the spatial domain decomposition should be time-dependent. For domain decomposition criterion at time step $\text t_\text n$ , the electromagnetic field distribution at the previous time…

Continue reading...