Computational Electromagnetics (19)

Prism-DGTD with GDM to analyze pixelized metasurfaces

Prism DGTD simulation toolkit with GDM for pixelized metasurface This simulation package is the prism-based Discontinuous Galerkin Time Domain method with General Dispersion Model for analysis of gold pixelized metasurfaces. How to use it: Open "runme.m" in MATLAB. Modify the time span and the Geo matrix "A". The geometry is a 2-fold symmetric unit cell with a period of 400 nm. The unit cell can be patterned by several gold pixels, measures 50 nm × 50 nm × 20 nm. In order to add gold padding, one could input the number of padding, and then the index numbering. The index…

Continue reading...

Prismatic discontinuous Galerkin time domain method with an integrated generalized dispersion model for efficient optical metasurface analysis

Planar photonics technology is expected to facilitate new physics and enhanced functionality for a new generation of disruptive optical devices. To analyze such planar optical metasurfaces efficiently, we propose a prismatic discontinuous Galerkin time domain (DGTD) method with a generalized dispersive material (GDM) model to conduct the full-wave electromagnetic simulation of planar photonic nanostructures. Prism-based DGTD allows for triangular prismatic space discretization, which is optimal for planar geometries. In order to achieve an accurate universal model for arbitrary dispersive materials, the GDM model is integrated within the prism-based DGTD. As an advantage of prismatic spatial discretization, the prism-based DGTD with…

Continue reading...

An Improved Simultaneous Stage-wise Weak Orthogonal Matching Pursuit Algorithm for Microwave Brain Stroke Imaging

Stroke is a dangerous disease with a high recurrence rate. Therefore, postoperative patients need timely monitoring of stroke conditions in their rehabilitation stage for early treatment. Recent studies in biomedical imaging have shown that strokes produce variations in the electric permittivity of brain tissues, which can be detected by microwave imaging techniques. Assuming that we have obtained the image of electromagnetic parameters in previous treatment, we can use differential imaging to detect the bleeding points when stroke recurs. However, the computational cost of traditional methods could be prohibitively large, as the bleeding points are small in the early stages of…

Continue reading...

Prism-based Discontinuous Galerkin Time Domain Analysis of Frequency Selective Surfaces in Lossy Water

Planar periodic structures are widely utilized in microwave applications. The prism-based Discontinuous Galerkin time domain (DGTD) method is optimal to cope with the modeling challenges associated with these planar structures. In this work, we modified the prism based DGTD to take lossy materials into account. A ring-shaped frequency selective surface (FSS) is studied as a representative numerical example. When submerged into water, the operating frequency of the FSS is lowered dramatically. We test the algorithm with distilled and tap water of different conductivity. Results of both examples compare well with references of commercial software, which validates the accuracy of the…

Continue reading...

Research and Applications on Basis Functions of Discontinuous Galerkin Time Domain Method

The Discontinuous Galerkin Time-Domain (DGTD) method has gain great popularity for its capability of obtaining highly accuracy, flexibility, efficiency and parallel-computing. Different basis functions have their own merit in their advantageous applications. In this work, we focus on reseaches of DGTD’s basis functions and their advantageous applications. We firstly designed a nodal high-order based DGTD algorithm and studied its improvement on accuracy. As we known, an ultra-dense-mesh h-refinement will lead to the low-frequency breakdown which has been studied for decades. However, for highorder p-refinement, it is conventionally regarded that the accuracy is only limited by the basis orthogonality. While in…

Continue reading...

An improved 2D/3D hybrid discontinuous Galerkin time domain method

Power integrity (PI) problem is essential when analyzing high speed signal passing through power ground. The fundamental mode in power ground is the zero-order parallel plate mode, which is capable for 2D simplification. However, in areas around anti-pads and other z-axis discontinuities, 3D algorithm has to be adopted to improve the accuracy. A hybrid 2D/3D discontinuous Galerkin time domain (DGTD) method has advantage on both accuracy and efficiency, thus is effective to cope with such full wave simulations. The 2D and 3D domains share the same triangular prism mesh. With appropriated basis functions, different domains can couple with each other…

Continue reading...